Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Constraints on Quasar Emission Properties from the HeII and HI Transverse Proximity Effect

Schmidt, Tobias Marius

[thumbnail of PhD_Thesis_TobiasSchmidt_20181221.pdf]
Preview
PDF, English
Download (9MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

Bright quasars are powerful sources of ionizing radiation and have profound impact on the Intergalactic Medium. In particular, they create regions with enhanced ionization and therefore reduced Lyman α forest absorption in their surroundings. Observing this so-called transverse proximity effect along background sightlines provides a view of the foreground quasar from different vantage points, and hence at different lookback times compared to the line-of-sight toward Earth. One can thus constrain the emission history (lifetime, age) and emission geometry (obscuration, opening angle) of the foreground quasar based purely on geometric and light travel time arguments. Both quantities are so far poorly constrained by observations but fundamental for the understanding of Active Galactic Nuclei. To investigate the HeII transverse proximity effect, we conducted an optical spectroscopic foreground quasar survey around 22 HST/COS sightlines, leading to a sample of 20 foreground quasars. We find statistical evidence for the the HeII transverse proximity effect and infer a constraint on the quasar lifetime of > 25 Myr. From a detailed modeling, based on cosmological hydrodynamical simulations and a dedicated photoionization model including quasar obscuration and finite quasar lifetime, we derive joint constraints on age and obscuration of individual objects, indicating that one quasar is old and unobscured (tage ≈ 25 Myr, Ωobsc < 30 %) while three other are either young (tage < 10 Myr) or highly obscured (Ωobsc > 70 %). However, the models also reveal that the large scatter intrinsic to the HeII Lyα forest prohibits further progress in the field. I therefore developed a novel method that uses large numbers of HI Lyα forest spectra to map the 3D light echo of individual quasars. An end-to-end test confirms that such tomographic observations can constrain the age of hyperluminous quasars to better than 20%, requiring only 1 – 2 nights on existing 8 – 10 m facilities. The method bears potential to also constrain the quasar emission geometry and the full lightcurve over the past 100 Myr, rendering it a viable tool to investigate quasar properties.

Document type: Dissertation
Supervisor: Hennawi, Prof. Dr. Joseph F.
Date of thesis defense: 5 February 2019
Date Deposited: 04 Mar 2019 09:28
Date: 2019
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
Service facilities > Graduiertenschulen > Graduiertenschule Fundamentale Physik (HGSFP)
Service facilities > Max-Planck-Institute allgemein > MPI for Astronomy
DDC-classification: 520 Astronomy and allied sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative